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In strongly interacting electron systems with low density the thermodynamic density of states is negative at
low temperatures. This creates difficulties with understanding of the Einstein relation between conductivity and
diffusion coefficient. Using the expression for electrochemical potential that takes into account the long-range
part of the Coulomb interaction it is shown that at negative density of states the Einstein relation gives a
negative sign of the diffusion coefficient D, but under this condition there is no thermodynamic limitation on
the sign of D. That happens because the unipolar relaxation of inhomogeneous electron density is not described
by the diffusion equation. The relaxation goes much faster due to electric forces caused by the inhomogeneous
electron density. The diffusion coefficient is irrelevant in this case and it is not necessarily positive because the
diffusion process does not contribute to the positive production of entropy. In the case of bipolar diffusion,
negative D results in a global absolute instability that leads to formation of neutral excitons. Graphene is
considered as an example of a system where the density relaxation is expected to be due to electric force rather
than diffusion. It may also have a negative density of states.

DOI: 10.1103/PhysRevB.78.155130 PACS number�s�: 71.27.�a, 71.35.Ee, 78.67.De

I. INTRODUCTION

The idea of the Einstein relation was put forward by
Einstein1 and von Smoluchowsky2 in 1905–1906. Both sci-
entists considered Brownian motion in the presence of gravi-
tational force. The result is the relation between mobility u in
the field and the diffusion coefficient D. In case of electric
field and particles with charge e the Einstein relation has a
form

eD = Tu , �1�

where T is the temperature in energy units. The main idea
was equivalence of an external force and a density gradient.
Of course, neither Einstein1 nor von Smoluchowsky2 cared
about negligible mutual gravitational or any other small in-
teraction of the Brownian particles. However, the interaction
might be important for electron systems.

The formulation of the Einstein relation for electrons is
based on the electrochemical potential, the thermodynamic
function that, like temperature and pressure, should be the
same at all points of the system in the equilibrium state. The
usual arguments are as follows. If an external potential � is
applied to the system, the condition of thermodynamic equi-
librium reads

Eec = ��n� + e� = const, �2�

where ��n� is the chemical potential as a function of inho-
mogeneous electron density n. In the equilibrium both n and
� are function of coordinates while Eec is constant. The tem-
perature T should also be constant. Therefore, the electrical
current density j at constant T can be written in a form3

j = −
�

e
� Eec = �E − D � en , �3�

where � is conductivity and E=−��. Then one gets relation
connecting � and D,

�

e2

d�

dn
= D , �4�

which is more general form of the Einstein relation. The
derivative dn /d� is called the thermodynamic density of
states. For the Boltzmann gas d� /dn=T /n and one gets Eq.
�1� if �=enu. It appears that the derivation of Eq. �4� is
independent of the properties of the system and this equation
can be considered as a general thermodynamic law.

A simple observation shows however that in the case of
nonideal electron gas the Einstein relation needs some com-
ments. We discuss an electron gas in a positive uniform
background at low temperatures and low densities when di-
mensionless parameter rs is not very small. Here rs

3

=3 / �4�naB
3� in three-dimensional �3D� case and rs

2

=1 /�n2aB
2 in two-dimensional �2D� case, where n and n2 are

three- and two-dimensional electron densities, respectively,
aB=�2� /me2 is the Bohr radius, m is an effective electronic
mass, and � is an effective permittivity.

The problems of dynamic screening and diffusion in a
slightly nonideal electron gas �rs�1� with electron-electron
interaction were considered in detail about 20 years ago �see
Refs. 4–6�. In this case the thermodynamic density of states
is large and positive. I concentrate here on the strongly non-
ideal case rs	1.

An electron gas on the positive background at low tem-
peratures and low densities has energy E of the order of
−e2n1/dN /�, where d=2,3 is the space dimensionality, n is
the density per unit area or volume, and N is total number of
electrons. Then ��−e2n1/d /� and E, �, and d� /dn are
negative.7,8 The first experimental confirmation of this idea
was done by Kravchenko et al.,9,10 but direct quantitative
study of this effect was performed by Eisenstein et al.11,12

The thermodynamic density of states is the compressibil-
ity of the electron gas. It has to be positive due to the ther-
modynamical condition of stability. However, this principle
cannot be applied to the charged systems, such as electron
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gas, because part of their energy is outside the system in a
form of the energy of an electric field. On the other hand, in
the case of neutral electron-hole plasma, the situation of
negative compressibility can arise leading to collapse of the
system. Such a situation is considered at the end of Sec. III.

It follows from Eq. �4� that if d� /dn is negative, the
diffusion coefficient D and conductivity � have opposite
signs. This observation needs an explanation because near
the thermodynamic equilibrium both of them have to be
positive to provide a positive entropy production due to the
Joule heat and due to the relaxation of inhomogeneous
density.

II. ELECTROCHEMICAL POTENTIAL AND STATIC
SCREENING

To resolve this contradiction one should include the long-
range part of the Coulomb potential created by inhomoge-
neous electron gas into the function Eec in Eq. �2�. This con-
tribution is a functional of n�r�.

To find Eec, taking into account electron-electron interac-
tion, one should minimize the Helmholtz energy F with re-
spect to electron density n�r� at a given value of T and N.
For low T one gets

F =
e2

2�
� � n��r�n��r��d3rd3r�

�r − r��
+� f�n + n��d3r

+� en��r��d3r − Eec� n��r�d3r , �5�

where f is the Helmholtz energy density of a homogeneous
electron system in the positive background that results from
the interaction. Since this interaction comes mainly from the
nearest neighbors and n�r� is a smooth function, one may
assume that both f and the chemical potential �=df /dn are
local functions of n�r�. We assume also that n�r�=n+n��r�,
where n is average density and n��n.

Minimization of this expression with respect to n� gives
the equation

Eec = ��n� + e� +
d�

dn
n� +

e2

�
� n��r��d3r�

�r − r��
. �6�

Equation �6� differs from Eq. �2� by the potential of electrons
in the right-hand side. Note that this potential is due to the
violation of neutrality in a scale much larger than the average
distance between electrons. To check this equation we con-
sider thermodynamic equilibrium and find equations for the
Thomas-Fermi static screening in three- and two-
dimensional cases. Since Eec is independent of r in thermo-
dynamic equilibrium one may take Eec−��n� as a reference
point for the total potential 
 defined as


 = � +
e

�
� n��r��d3r�

�r − r��
. �7�

It follows from Eq. �6� that

e
 = −
d�

dn
n�. �8�

The Poisson equation has the form

�2
 = −
4��en� − �ext�

�
, �9�

where �ext is density of the external charge. Using Eq. �8�
one gets the final equation for the 3D linear screening,

�2
 = − q3
2
 −

4��ext

�
. �10�

Here,

q3
2 =

4�e2

�

dn

d�
�11�

is the reciprocal three-dimensional screening radius.
Consider now a thin layer �x-y plane� with a 2D electron

gas separating two media with dielectric constants �1 and �2.
In this case one should substitute n⇒n2��z� and �⇒ �̄
= ��1+�2� /2. The result is13

�2
 = − q2
��z� −
4��ext

�̄
, �12�

where

q2 =
2�e2

�̄

dn2

d�
. �13�

It is important that Eqs. �10� and �12� are applicable only if
the screening is linear �n��n�.14 There is another serious
problem of applicability of the Thomas-Fermi approximation
in the case of negative density of states. Indeed, the dielectric
permittivity in this approximation has forms


�q� = ��1 −
�q3

2�
q2 � �14�

in the 3D case and


�q� = ��1 −
�q2�
q
� �15�

in the 2D case. In both cases 
�q� has roots at q= �q3� , �q2�.
The expression for the screened potential 
 has the form


�r� =� 
0�q�exp�iq · r�dq


�q�
, �16�

where 
0 is a bare potential. Thus, the roots of 
 transform
into the first-order poles of the integrand without any reason-
able rule of handling those poles. Such a rule follows from
the causality for the � plane but not for the q plane. More-
over, the electrostatic potential should be real and so one
cannot add a small imaginary part in the denominator. There-
fore it seems that the poles do not have any physical sense.

The reason is that the negative sign of the density of states
appears when q3 ,q2 are of the order of the average distance
between electrons r̄. At such distances the very concept of
macroscopic field does not have any sense. However, if the
bare potential has only harmonics with q� �q3� , �q2�, Eqs.
�10� and �12� have meaning.

Consider, for example, the screening of a positive charge
Z at a distance z0 from the plane with 2D gas �plane z=0�.
The solution of Eq. �12� has a form13
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��� = �
0

� Z exp�− qz0�
��q + q2�

qJ0�q��dq , �17�

where � is a polar radius in the plane z=0. Suppose that
�q2�z0�1. Then the contribution to integral �Eq. �17�	 from
q
�q2� is exponentially small and one can ignore q in the
denominator. Then


��� =
Zz0

�q2�z0
2 + �2�3/2 . �18�

Note that a positive charge creates a small negative potential
in the plane with electrons if q2�0. This can be called
“overscreening.”

The extra electron density, as calculated from Eq. �8�, is

en� = −
Zz0

2��z0
2 + �2�3/2 . �19�

It is negative and independent of the sign of q2. One can see
that the total charge

�
0

�

en�2��d� = − Z . �20�

Due to the geometry of the problem the electric field is zero
below the plane with electrons. As follows from Eq. �8�, the
signs of charge density and potential are opposite if the den-
sity of states is negative.

For the case of two such planes �double quantum well
structure� Luryi15 predicted a small penetration of electric
field through the first plane. He considered the case of posi-
tive density of states. Then the small penetrating field be-
tween two planes has the same direction as the incident field.

Eisenstein et al.11 studied this effect experimentally and
found out that at negative density of states the propagating
field is opposite to the incident field and this is also a result
of the overscreening �see the quantitative theory in Refs. 12,
16, and 17�. Negative density of states was also used18 for
the explanation of magnetocapacitance data by Smith et al.19

III. CONDUCTIVITY VERSUS DIFFUSION

Now we come back to the problem of negative diffusion.
If the system is not in equilibrium, the electric current can be
written in the same form as Eq. �3�,

j = −
�

e
� Eec. �21�

Using Eq. �6� one gets

j = �E − D � en� − �
e

�
�� n��r��d3r�

�r − r��
. �22�

Here D is connected to � by the Einstein relation �Eq. �4�	.
Considering relaxation of the charge density one can ignore
the external field E. The relaxation is described by the con-
tinuity equation

��en�
�t

= − � · j �23�

or

��en�
�t

= �� 1

e2

d�

dn
�2�en�� −

4�en�

�
� . �24�

The ratio R of the first �diffusion� term in the right-hand side
to the second �field� term is R= �q3

2L2�−1, where

L =�� n�

�2n�
� �25�

is the characteristic size of the extra charge and q3
2 is given

by Eq. �11�. If the electron gas is nonideal, q3�1 / r̄, where r̄
is the average distance between electrons. However, the con-
cept of diffusion equation is valid only at L� r̄. This means
that for the nonideal gas, �R��1 and the diffusion term in Eq.
�24� should be ignored. Then Eq. �24� has a simple solution,

n��r,t� = n��r,0�exp − �t/�M� , �26�

where �M =� / �4��� is the well-known Maxwell time. The
coefficient D does not enter in this case in the entropy pro-
duction and the sign of D is not necessarily positive. Thus in
a three-dimensional nonideal electron gas, negative d� /dn
does not create any contradiction with the Einstein relation.

In the 3D gas of high density ��n2/3 and R��r̄ /L�2 /rs
with rs�1. In this case R might be large and diffusion is
possible. However d� /dn�0 and D�0.

Now we consider the relaxation of the charge density in
the two-dimensional case. Instead of Eq. �24� one gets

��en2�
�t

= �2� 1

e2

d�

dn2
�2�en2�� −

e

�̄
�2� n2��r��d2r�

�r − r��
� .

�27�

Here n2, �2, and � are two-dimensional density, conductiv-
ity, and two-dimensional gradient, respectively. To discuss
this equation it is convenient to make the Fourier transfor-
mation. Then one gets

��nq�
�t

= − �2� 1

e2

d�

dn2
q2nq +

2�q

�̄
nq� , �28�

where nq is the Fourier transform of n2�.
Now we find that the ratio of the first �diffusion� term in

the right-hand side of Eq. �28� to the second �field� term
R2=q /q2, where q2 is given by Eq. �13�. Similar to the 3D
case, in the nonideal gas �q2��1 / r̄ and diffusion should be
ignored. Then we get the Dyakonov-Furman equation,20

��nq�
�t

= − vqnq, �29�

where velocity v=2��2 / �̄. The physical meaning of this
equation is that the extra density of electrons localized ini-
tially at some spot propagates in all directions with velocity
v conserving the total amount of extra electrons. Of course,
this way of relaxation is more efficient than diffusion �ran-
dom walk� because r�vt while r��Dt in the case of diffu-
sion. Thus, the diffusion coefficient D is irrelevant and nega-
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tive d� /dn does not create any contradiction with the
Einstein relation. In a high-density electron gas, R2=qr̄ /rs
and the diffusion mechanism is possible. In this case
d� /dn�0 and D�0.

One can consider this problem from a different point of
view. In both 3D and 2D cases the negative diffusion coef-
ficient D appears in the term with the highest derivative that
leads to the absolute instability even if D is small.21 Con-
sider, for example, Eq. �24�, the 3D case. After the Fourier
transformation the solution for the charge density �=en� can
be written in the form

�q = �q
0 exp�−

4��t

�
− Dq2t� , �30�

where D is given by the Einstein relation �Eq. �4�	. One can
see that at D�0 solution increases with time exponentially
for harmonics with qr̄	1.

The physical explanation is as follows. Equations �24�
and �27� contain the average distance between electrons r̄. So
they contain information that the charged liquid has a dis-
creet electronic structure. This information comes from the
negative density of states which originates from the interac-
tion of the separate electrons. That is why macroscopic equa-
tions become unstable at large q. The message is that n�r� is
rather a set of � functions than a continuous function. The
instability is absent if D is positive.

The instability at large q and small negative D does not
affect harmonics with small q because Eqs. �24� and �27� are
linear. Due to the linearity different harmonics are indepen-
dent and any exchange of energy between them is forbidden
�cf. phenomenon of turbulence in nonlinear hydrodynamics
where the exchange of energy is not forbidden, but the insta-
bility is initiated at large distances�. Therefore, we conclude
that at small D, the approximation D=0 that gives Eqs. �26�
and �29� is correct.

One should note that the problem of the nonphysical roots
of electric permittivity discussed in Sec. II is of the same
nature. Before, we have discussed unipolar diffusion. Con-
sider now the simplest case of ambipolar diffusion assuming
that at t=0 the densities of electrons and holes are equal in
some finite region of space and are zero otherwise. Moreover
we assume that the local macroscopic charge density ��r , t�
=0 and the recombination of carriers is very slow. In this
case Eq. �6� describes the electron-hole system in quasiequi-
librium. At large rs one gets E ,� ,d� /dn�0 but the last term
in Eq. �6� is absent. So the smearing of the density of par-
ticles is described by the equation of diffusion at all rs, but at
small density �rs	1�, the coefficient D�0. Then the abso-
lute instability takes place for all harmonics that means a
collapse of the system. Thus the electron-hole “Wigner liq-
uid” and crystal are unstable.

This result is very transparent. It happens because nega-
tive � just means that the energy of the system decreases
with increasing density. In the bipolar case, neutrality is pro-
vided by the particles and we do not consider any back-
ground. Thus the instability is a result of the negative com-
pressibility in a neutral system. At large enough rs these
particles are classical, and the absence of the mechanical

equilibrium follows also from the Earnshaw theorem. In re-
ality quantum mechanics becomes more important with in-
creasing density. As a result excitons are formed. These neu-
tral particles have a positive diffusion coefficient Da and
their density smears with time through all available space.
This process is described by a regular diffusion equation. In
the case of optical excitation the carriers may appear in the
form of the excitons from the very beginning

For the coefficient of ambipolar diffusion Da a textbook
equation22

Da =
2DeDh

De + Dh
�31�

is often used, where De,h are the unipolar diffusion coeffi-
cients of electrons and holes. As follows from the previous
discussion, one should be careful with this equation because
for the nonideal electron �or hole� gas these unipolar coeffi-
cients might be negative and meaningless. That happens be-
cause in the unipolar case there is a deviation from neutrality
that creates an electric field, while in bipolar case the system
is neutral. In this case Eq. �31� does not work and one should
calculate Da in a different way as a diffusion of the excitons.

In the recent paper by Zhao23 the experimental results for
ambipolar diffusion in a silicon-on-insulator system are com-
pared with Eq. �31�. At high temperatures a good agreement
is found, while at low temperatures the observed values of
Da are six to seven times less. The previously reported
values24 show similar temperature dependence.

The author’s explanation is that coefficients De,h are taken
for the bulk silicon using Einstein relation and they might be
larger than in the film at low temperatures. However, the
reason discussed above cannot be excluded.

IV. GRAPHENE AS A POSSIBLE EXAMPLE OF A
NONIDEAL ELECTRON SYSTEM

It is interesting to discuss the single layer graphene as an
example of the system with nonideal electron gas. Graphene
is a gapless material with a linear spectrum of electrons and
holes near the Dirac point. Due to some reasons, which are
not quite clear now, the velocity v of electrons and holes in
equation 
= � pv is of the order of e2 /�. It follows that at
any Fermi energy within this linear spectrum, the electron
gas in graphene is nonideal in a sense mentioned above: the
absolute value of the chemical potential is of the order of
interaction energy e2n1/2. This means that unipolar density
relaxation in this system should be described by the
Dyakonov-Furman equation20 rather than by the diffusion
equation.

However, without magnetic field the electron gas in
graphene is marginally nonideal. It cannot be classical, like
an electron gas of low density with a quadratic spectrum.
The marginal situation makes theoretical calculations very
difficult. Nevertheless, it is accepted that the Wigner crystal
in single layer graphene is absent without magnetic field.25

The sign of d� /dn is also an interesting question but very
difficult for theoretical study. Recently tunneling microscopy
experiment has been done by Martin et al.26 They claimed
that their measurement gives the thermodynamic density of
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states and that it is positive. The last statement might be a
result of disorder.

V. CONCLUSION

Finally I argue that the negative sign of diffusion coeffi-
cient that follows from the Einstein relation at negative den-
sity of states does not lead to any contradiction because the
diffusion coefficient is irrelevant for unipolar transport under
this condition. The sign of the diffusion coefficient in this

case should not be definitely positive because the diffusion is
not the main source of the entropy production. In the bipolar
situation negative diffusion means the collapse of the system
and formation of neutral excitons.
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